Изменение содержания углерода в атмосфере в разные геологические периоды

Итак, оледенение отступало. До тех пор, пока расплодившаяся биота опять не выводила почти все запасы углекислого газа из атмосферы, и цикл начинался опять.

Вероятно, в результате этого и возникали в палеозойскую эру несколько оледенений. Это оледенение пермо-карбоновое (350-230 млн. лет назад), начавшегося в каменноугольном периоде, а также оледенения на границе верхнего ордовика - нижнего силура (460-420 млн. лет назад), и оледенение верхнего девона (370-355 млн. лет назад).

Такие оледенения, продолжавшиеся несколько миллионов (а то и десятков миллионов) лет, чередовались с теплыми периодами, и продолжались эти колебания до тех пор, пока не сформировались биологические механизмы, усилившие и сделавшие более стабильным приток кислорода в глубинные слои, что обеспечило возвращение почти всего извлекаемого из атмосферы углекислого газа обратно [36].

По окончании пермо-карбонового оледенения, с наступлением мезозойской эры, на планете установился очень теплый климат, с полным отсутствием полярных ледяных шапок. Теплый климат на протяжении почти всего мезозоя, со средними температурами на 10-15°С, превышающими современные, вероятно обеспечивало довольно высокое содержание парниковых газов в атмосфере, появившееся после мощной вулканической активности и сильнейшего вымирания на границе палеозоя и мезозоя, и поддерживавшееся на приблизительно том же уровне и далее, до конца мезозоя. В меловом периоде, например, концентрация углекислого газа в атмосфере была выше в 6-10 раз современной [36].

Одной из причин, по которой в большей части мезозоя сохранялось высокое содержание углекислого газа в атмосфере, вероятно, было совершенствование круговорота углерода, обеспечившее более эффективный возврат его в атмосферу. Кстати, за время накопления всех каустобиолитов (уголь, нефть и пр.) в фанерозое, примерно 40% созданных запасов приходится на палеозой, 50% на кайнозой, и только 10% на мезозой [36].

Содержание углекислого газа в атмосфере в начале кайнозоя (палеоцен-эоцен) было приблизительно в пять раз выше современного. Средние температуры тогда были выше современных приблизительно на 8°С. Даже в Северном море в палеоцене температура поверхностных вод составляла около 17-18°С, увеличившись в эоцене до 22-23 °С [36].

Стоит отметить продолжавшееся снижение парникового эффекта - так содержание углекислого газа в атмосфере уже в раннем миоцене (около 20 млн. лет назад) понизилось по сравнению с палеоценом и эоценом приблизительно вдвое (до 0,09% с 0,16%), и составляло одну треть от своего содержания в атмосфере во время мелового периода (около 0,27%) [36].

Итак, содержание углекислого газа, накопленного в результате мощной дегазации пород в атмосфере во времена архея (когда он являлся основным газом земной атмосферы, приблизительно на порядок более плотной нежели сейчас), в ходе всей последующей эволюции планеты постепенно снижалось, что уменьшало парниковый эффект, который во времена архея поднимал температуру поверхности Земли приблизительно на пару сотен градусов выше температуры лучистого равновесия для того времени. Правда, на эту долговременную, в миллиарды лет, тенденцию накладывались довольно значимые колебания - стоит вспомнить и великие оледенения начала и конца протерозоя, и теплую обстановку мезозойской эры.

Конечно, мощный парниковый эффект архейской атмосферы определялся отнюдь не одним углекислым газом, огромную роль играли и большие запасы накопленных в атмосфере паров воды. Но при этом, так как, по всей видимости, в архее условия на поверхности планеты все же позволяли существовать воде в жидком состоянии, далеко не вся выделявшаяся при дегазации недр вода оставалась в атмосфере, значительная часть ее конденсировалась и выпадала на поверхность. Концентрация водяных паров в атмосфере по мере выведения углекислого газа из нее должна была снижаться тоже - снижение содержания углекислого газа приводило к некоторому остыванию атмосферы, что в свою очередь приводило к дополнительной конденсации водяных паров в ней и к дальнейшему понижению парникового эффекта. А переход дополнительно части парообразной воды в жидкое состояние из-за понижения температуры, в свою очередь способствовал дальнейшему выведению углекислого газа из атмосферы (механизмы чего были описаны ранее).

Перейти на страницу: 1 2 3 4

Интересное по теме

Фитопатогенная биота в сосняках зеленой зоны г. Красноярска
Лес - сложная природная система, являющаяся важным элементом ландшафта и имеющая огромное средообразующее и средозащитное значение. Он оказывает многостороннее влияние на окружающу ...

Последствия аварии на Чернобыльской АЭС
26 апреля 1986 года произошел взрыв на Чернобыльской АЭС, которая расположена в 100 км от Киева в Украине (в то время части СССР), и последующий пожар реактора, длившийся 10 дней. ...

Влияние полимеров на окружающую среду (на примере поливинилхлорида и полиэтилена)
Тема моего курсового проекта «Влияние полимеров на окружающую среду». Проблема утилизации и переработки полимеров в наше время очень актуальна. За один только год в России образ ...

Перспективы и вопросы сохранения биоты и биоресурсов шельфа на Дальнем Востоке
Тихоокеанские воды России протянулись на тысячи километров с севера на юг, создавая условия для существования чрезвычайно разнообразной морской флоры, фауны и экосистем: от субтроп ...