Трансформация люизита в объектах окружающей среды

Для организации и проведения мониторинга состояния окружающей среды в районах хранения и уничтожения химического оружия, а также для прогнозирования развития возможных критических экотоксикологических ситуаций чрезвычайно важное значение имеет информация о путях и механизмах миграции и трансформации отравляющих веществ (ОВ) в природных средах, основных продуктах трансформации, о длительности их сохранения в объектах окружающей среды и о других характеристиках поведения ОВ.

Такие сведения в научной литературе весьма ограничены и относятся лишь к исходным табельным ОВ, в частности, люизиту [1,2]. Данные о поведении токсичных продуктов трансформации люизита практически полностью отсутствуют. Между тем, исходя из физико-химических свойств люизита, следует ожидать, что в природных средах могут образовываться продукты трансформации, по токсичности не уступающие исходному ОВ.

В условиях комплексного воздействия на люизит факторов окружающей среды необходимо, на наш взгляд, проведение анализа имеющейся информации, связанной с его поведением в воде и почве.

Почвы являются основной депонирующей средой, куда загрязнители поступают с выпадениями из атмосферы, лиственным спадом, отмершими частями растений и т.д. Состояние почв - интегральный индикатор многолетнего процесса загрязнения всей окружающей среды, дающий представление о качестве жизнеобеспечивающих сред - атмосферного воздуха и вод. Кроме того, загрязненные почвы сами являются источником вторичного загрязнения приземного слоя воздуха, поверхностных и грунтовых вод. Таким образом, почвы представляют тройной интерес, как начальное звено пищевой цепи, как источник вторичного загрязнения атмосферы и как интегральный показатель экологического состояния окружающей среды.

Бактерии осуществляют детоксикацию токсичных химикатов, а растение и его корневая система являются депо для микроорганизмов. Корневые выделения растений поддерживают высокую активность микрофлоры. Органические вещества корневых выделений растений обеспечивают микроорганизмы питанием и энергией. Кроме того, корни вносят вклад в создание окислительного и водного потенциалов, необходимых для существования почвенных микроорганизмов и осуществления ими процесса ремедиации. В свою очередь ризосферные микроорганизмы, продуцируя различные биологически активные вещества, в том числе фитогормоны, способствуют увеличению поглощающей поверхности корней и, следовательно, усиливают способность растений поглощать загрязнители.

Среднее содержание мышьяка для незагрязненных почв принято 2 мг/кг [3]. Почвы с естественным содержанием мышьяка не представляют опасности для здоровья человека. Предельно-допустимая концентрация люизита и ипритно-люизитных смесей в почве составляет 0,1 и 0,01 мг/кг соответственно. Почвы, содержащие значительное количество мышьяка, например, в результате возможных аварий или аварийных ситуаций на объектах по хранению и уничтожению химического оружия, представляют угрозу для населения и окружающей среды. Поэтому вопросы их фитобиотоксичности и опасности для здоровья человека выступают на первый план.

Специфическая особенность почвы по сравнению с другими объектами (вода, воздух) состоит в сложности оценки степени загрязнения ее токсичными веществами. Общее содержание загрязняющих веществ в почве служит необходимым, но недостаточным показателем загрязнения. Увеличение общего содержания элемента в почве может и не приводить к негативному воздействию его на экосистему и ее компоненты. Только увеличение содержания в почве подвижных соединений элемента создает возможность его перехода в сопряженные с почвой среды (растения, природные воды и т.д.) и тем самым таит реальную угрозу для организмов.

Представляет значительный интерес оценка воздействия продуктов трансформации люизита на растения и ризосферные микроорганизмы. В качестве объекта исследования выбран 2-хлорвиниларсиноксид - продукт гидролиза люизита в объектах окружающей среды.

Целью работы являлось изучение поведения люизита и продуктов его трансформации в объектах окружающей среды, оценка воздействия 2-хлорвиниларсиноксида на рост семян подсолнечника и пшеницы, а также культуры Azospirillum brasilense Sp 245 и бактериальную продукцию индолил-3-уксусной кислоты.

Для достижения поставленной цели необходимо решение следующих задач:

изучение реакций люизита и 2-хлорвиниларсиноксида с химическими соединениями, моделирующими активные компоненты почв (вода, полифункциональные соединения);

оценка воздействия 2-хлорвиниларсиноксида на рост семян подсолнечника и пшеницы, а также ризосферных микроорганизмов Azospirillum brasilense Sp 245.

    Интересное по теме

    Исследование форм и методов экологического управления и менеджмента водными ресурсами на промышленных предприятиях
    Выпускная работа магистру должна быть научной квалификационной работой, предназначенной для решения задания, которое имеет существенное значение для соответствующей отрасли знания ...

    Ядерное оружие типы, физика, поражающие факторы, экологические последствия
    Понятие ядерное оружие объединяет взрывные устройства, в которых энергия взрыва образуется при делении или слиянии ядер. В узком смысле под ядерным оружием понимают взрывные устрой ...

    Виды экологической экспертизы
    Государственная экологическая экспертиза проводится специально уполномоченными государственными органами в области экологической экспертизы. Перечень объектов, подлежащих обязательной гос ...

    Трансформация люизита в объектах окружающей среды
    Для организации и проведения мониторинга состояния окружающей среды в районах хранения и уничтожения химического оружия, а также для прогнозирования развития возможных критических ...